A chemotaxis operon in the bacterium Desulfovibrio gigas is induced under several growth conditions.
نویسندگان
چکیده
The chemosensory system of bacteria controls their motility and behaviour in different environments. In the present study, we report the identification of the first chemotaxis operon in Desulfovibrio gigas. Amino acid sequence analysis revealed seven coding regions for polypeptides with a high similarity to chemotaxis proteins from other organisms. D. gigas chemotaxis operon has a similar genetic organisation to chemotaxis operons found in the sequenced genomes of Desulfovibrio desulfuricans and Desulfovibrio vulgaris. Control of gene expression was assessed by real-time reverse transcription-PCR in cells grown under different conditions. mRNA levels were enhanced in the presence of thiosulfate and sulfite and decreased upon exposure to NO. No effect was observed in the presence of O2, NaNO2, pyruvate or fumarate. These results show that the expression of the chemotaxis operon is enhanced in the presence of thiosulfate and sulfite indicating that under these compounds a chemotactic response seems to be triggered in D. gigas.
منابع مشابه
Targeted gene-replacement mutagenesis of dcrA, encoding an oxygen sensor of the sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough.
A gene-replacement mutagenesis method has been developed for the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough and used to delete dcrA, encoding a potential oxygen or redox sensor with homology to the methyl-accepting chemotaxis proteins. A suicide plasmid, containing a cat-marked dcrA allele and a counter-selectable sacB marker was transferred from Escherichia coli...
متن کاملAn HcpR paralog of Desulfovibrio gigas provides protection against nitrosative stress
Desulfovibrio gigas belongs to the group of sulfate reducing bacteria (SRB). These ubiquitous and metabolically versatile microorganisms are often exposed to reactive nitrogen species (RNS). Nonetheless, the mechanisms and regulatory elements involved in nitrosative stress protection are still poorly understood. The transcription factor HcpR has emerged as a putative regulator of nitrosative st...
متن کاملDesulfovibrio gigas flavodiiron protein affords protection against nitrosative stress in vivo.
Desulfovibrio gigas flavodiiron protein (FDP), rubredoxin:oxygen oxidoreductase (ROO), was proposed to be the terminal oxidase of a soluble electron transfer chain coupling NADH oxidation to oxygen reduction. However, several members from the FDP family, to which ROO belongs, revealed nitric oxide (NO) reductase activity. Therefore, the protection afforded by ROO against the cytotoxic effects o...
متن کاملDinitrophenol-stimulated adenosine triphosphatase activity in extracts of Desulfovibrio gigas.
A dinitrophenol (DNP)-stimulated adenosine triphosphatase (ATPase) has been found in both the soluble and particulate fractions of the anaerobic sulfate-reducing bacterium, Desulfovibrio gigas. As the soluble ATPase was labile to storage, only the particulate enzyme was studied in detail. It was optimally stimulated by DNP at 4 mm, and activity was insensitive to inhibition by ouabain. The ATPa...
متن کاملRoles of HynAB and Ech, the only two hydrogenases found in the model sulfate reducer Desulfovibrio gigas.
Sulfate-reducing bacteria are characterized by a high number of hydrogenases, which have been proposed to contribute to the overall energy metabolism of the cell, but exactly in what role is not clear. Desulfovibrio spp. can produce or consume H2 when growing on organic or inorganic substrates in the presence or absence of sulfate. Because of the presence of only two hydrogenases encoded in its...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- DNA sequence : the journal of DNA sequencing and mapping
دوره 17 1 شماره
صفحات -
تاریخ انتشار 2006